

Название проекта:

Автоматизированная система спутникового мониторинга зарослей макроводорослей "AlgaePaдap"

трек: Добыча + Производство

название команды: Макрофиты

Учреждение: ФГБОУ ВО «КГТУ»

Меньшенин Александр Сергеевич, капитан команды Состов комонды: Верникович Эвелина Константиновна, дизайнер, тестировщик

Хайретдинова Софья Эриковна, разработчик

Решаемая задача (кейс):

№6 Разработка технических решений для мониторинга биогеоценоза (например, карта "зрелости", куда вносятся данные о тех местах, где можно собирать ламинарию).

Отсутствие точных данных о локализации, плотности и степени зрелости водорослевых плантаций

Проблема:

нерациональное планирование промысла (перерасход топлива до 40%)

снижение качества сырья из-за сбора недозрелых (с дефицитом полезных веществ до 50%) или перезрелых водорослей (с повышенным содержанием тяжелых металлов на 30-40%)

• истощение ресурсов из-за отсутствия научно обоснованных квот на вылов

Оценка реализуемости проекта:

Опыт команды по работе над схожими проектами:

- Победа в конкурсе «УМНИК Маринет» и «Студенческий стартап» от Фонда содействия инновациям
- ТОП-17 в категории «Перспективные проекты» среди ТОП-1000 студенческих стартапов России (Платформа университетского технологического предпринимательства)

RU2024661962

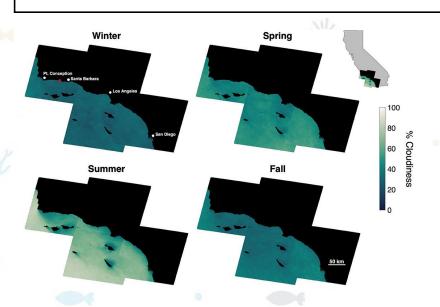
ГОСУДАРСТВЕННАЯ РЕГИСТРАЦИЯ ПРОГРАММЫ ДЛЯ ЭВМ

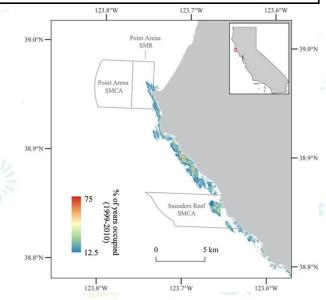
Тата публикации и номер бюдлете:

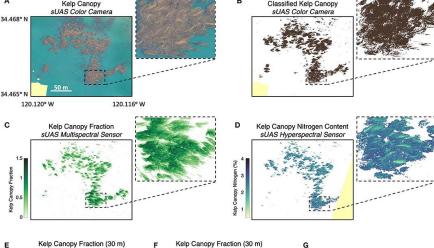
Бабухин Николай Игоревич (RU)

Іравообладатель(и):

азвание программы для ЭВМ


агрязнения, далее будут выделяться границы и определяться площади областей, а затем будут отсекаться лишние части и выделяться интересующая область изображения (ROI), которая будет




Существующий задел в сфере применения методов ДЗЗ в мониторинге водорослей

Атмосферная коррекция спутниковых данных (J. Feng, 2017)

Картирование прибрежный зарослей макрофитов в временном промежутке (К. С. Cavanaugh, 2021)

Обнаружение зарослей ламинарии с использованием ДЗЗ (Т. Bell, 2020)

Оценка реализуемости проекта:

Выбрана нейросетевая модель, отрабатываются алгоритмы получения

необходимой информации

отсекаем шум

Инновационность решения:

<u>Новизна</u>

Синергия технологий и методологий

спутниковый мониторинг и мониторинг БПЛА, мультиспектральные данные, ИИ, ГИС, биология (включая гидробиологию с альгологией, гидрологию и др.) и др.

Система автоматизированной, является полностью вычислительные процессы выполняются заранее обученной нейросетевой моделью, каждый процесс не требует прямого включения человека

Ключевые факторы новизны продукта:

- 1. Узкоспециализированный отраслевой ИИ-продукт, а не общая платформа.
- 2. Комплексный мониторинг не только наличия, но и состояния.
- 3. Предиктивная аналитика для планирования промысла и аквакультуры.
- 4. Технология автоматического детектирования изменений для экологического контроля.
- 5. Первая отечественная отраслевая платформа для работы с водорослями.

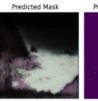
Эффективность решения:

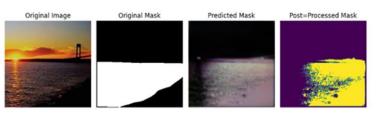
Система реализует алгоритмы машинного обучения для:

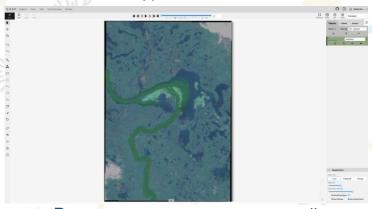
- 1) Детектирования и картографирования зарослей макроводорослей
- 2) Определения классов и семейств водорослей благодаря пигментному составу
- 3) Оценки биомассы и стадий зрелости (фенофазы)
- 4) Прогнозирования динамики развития

В основе системы лежит анализ мультиспектральных данных с применением:

- <u>специализированных спектральных индексов (NDVI, NDCI и др.)</u>
- нейросетевых моделей семантической сегментации (U-Net). Для калибровки и валидации результатов используются данные

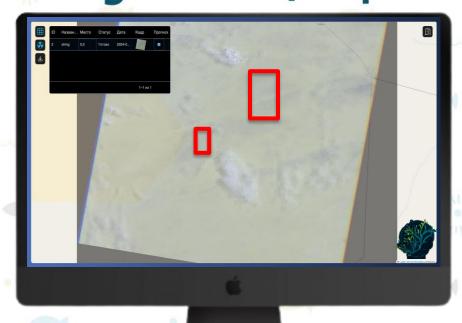

для калиоровки и валиоации результатов используются оанны натурных исследований.





1/1 — 9s 15ms/ste

Обучение модели выделения водных объектов


Выделение участков зарослей макроводорослей

Визуализация решения:

Процесс разработки образца системы

Автоматизированная система спутникового мониторинга зарослей макроводорослей "AlgaeРадар"

География проекта — Республика Карелия, Мурманская и Архангельская область, Приморский и Камчатский край, Чукотский АО, Сахалинская область

Экономическоя эффективность:

B₂B

Предприятия, занимающиеся добычей ВБР B₂G

Научные и образовательные организации, ФАР

Модель продаж – пакетно-подписочная

Стоимость подписки – от 300 тыс. руб. в год в зависимости от ряда параметров и индивидуальных особенностей

Demo-версия с ограниченным функционалом для апробации работы сервиса (для образовательных и научных учреждений)

ТАМ 78 млрд. руб.

По данным
Accenture Analytics
(Глобальный рынок услуг для добычи водных биоресурсов в 2024 г.)

SAM 5 млрд. руб

По данным Аналитической группы Всероссийской ассоциации рыбохозяйственных предприятий, предпринимателей и экспортеров (ВАРПЭ) в 2024 г.

SOM 0,3 млрд. руб (6 % от SAM)

Экономическоя эффективность:

		Scanex Maritime	EOMAP detect more.	НИИ и др. организации
Страна	РФ	РФ	Германия	РФ
Формат продукта	Автоматизи рованная система	Отдельная услуга	Отдельная услуга	Отдельная услуга
Время обработки	до 1 часа	от 10 дней	от 7 дней	От 25 дней
Гибкий функционал	да	нет	нет	нет
Стоимость обработки 1 кадра (15х15 км)	300 000 руб./ год	800 000 руб. за услугу	1 000 000 руб. за услугу	От 2 000 000 руб. за услугу

Преимущества нашего продукта:

- Информирование в режиме реального времени
- Простота в использовании (не требуется постобработка данных, вся информация обрабатывается в автоматическом режиме)
- Круглосуточная поддержка и настройка системы под конечного пользователя
- Мультипликативность продукта (возможность работы в любых акваториях)
- Возможность подключения данных БПЛА

Команда:

Меньшенин Александр Основатель стартапа

- 9 лет в сфере экологии, диплом о переподготовке Data Science от Yandex
- Заведующий лабораториями кафедры водных биоресурсов и аквакультуры Калининградского Государственного Технического Университета

Верникович Эвелина Системный аналитик, тестировщик

- Переподготовка Data Science от Yandex
- Повышение квалификации Тестирование систем
- Участие в разработке ІТ-проектов

Хайретдинова Софья Разработчик

- Переподготовка Python от Яндекс
- Опыт в программировании 4 года

Спасибо за внимание!

٧K

Телефон: +79527966316

Email: sascha11101999@mail.ru

БИОХАКАТОН "ФАРВАТЕР"