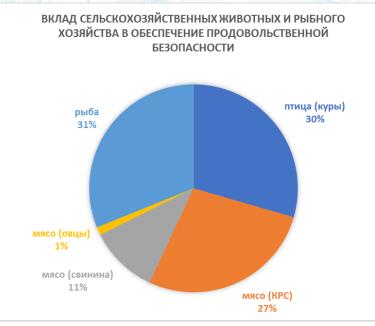


ГЕНОМИКА И НОВЫЕ ГЕНЕТИЧЕСКИЕ ТЕХНОЛОГИИ (NEW GENOMIC TECHNOLOGY) В СЕЛЕКЦИИ И АКВАКУЛЬТУРЕ

Мюге Николай Сергеевич

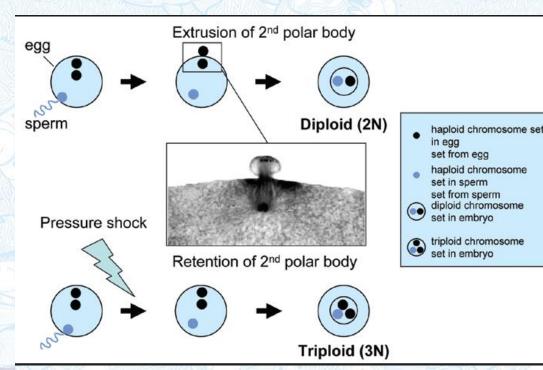
ГНЦ РФ ФГБНУ «ВНИРО»


Круглый стол «Умная селекция: как генетика меняет аквакультуру России»

VIII международный рыбопромышленный форум,

Санкт-Петербург 22-24.11.2025

РЫБА СЕГОДНЯ – ЭТО КУРИЦА ЗАВТРА!



- В 2021 г. российскими рыбаками выловлено 5,05 млн. тонн рыбы, что сопоставимо с результатами других направлений аграрного сектора куры около 5,07 млн. т., свинина 4,31 млн. т. и КРС 1,67 млн. т.
- Потребление рыбы и рыбных продуктов около 20 килограммов в год на душу населения (в сравнении с 80 кг на душу населения суммарно мяса птицы, свинины и КРС
- Почти ¾ объема вылова приходится на Дальневосточный административный округ, и большая доля вылова экспортируется в Китай и другие густонаселенные страны Юго-Восточной Азии

Стерильные триплоидные формы

• Благодаря уникальным биологическим свойствам рыб генетические технологии, недоступные для других сельскохозяйственных животных, широко применяются аквакультуре. В частности, в аквакультуре большую популярность имеют триплоидные (3n) формы – с тремя наборами хромосом вместо стандартных двух. Триплоидная форель имеет существенное преимущество стерильна, тем самым не происходит замедление скорости роста рыбы в процессе созревания половых продуктов

Триплоидный лосось – плюсы и минусы

Основные преимущества триплоидных рыб в аквакультуре:

- •Стерильность.
- •Более высокий темп роста.
- •Накопление жира.
- •Толстая кожа триплоидных рыб помогает сохранить влагу и улучшает сохранность продукта.

Forskning × Rådgivning × Publikasjoner × Temasider × Tokt og felt × Lab og stasjoner × Om oss ×

<u>Hjem</u> / <u>Rapporter</u> / Production, fasting and delousing of triploid and diploid salmon in Northern Norway

Production, fasting and delousing of triploid and diploid salmon in Northern Norway

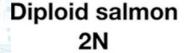
Report for the 2020-generation

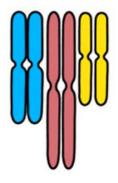
Author(s): <u>Lars Helge Stien</u>, Cameron Thompson, <u>Per Gunnar Fjelldal</u>, <u>Frode Oppedal</u>, Tore Kristiansen (IMR), Per Anton Sæther (Åkerblå AS), Per Magne Bølgen (SalMar AS) and Lisbeth Martinsen (SalMar AS)

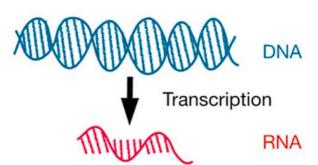
Основные недостатки триплоидного лосося:

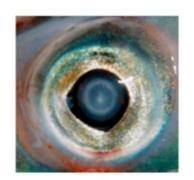
- •Более высокая восприимчивость к стрессу и болезням.
- •Потребление большего количества корма. _Триплоидным рыбам требуется несколько иная пища, чем диплоидным.
- •Большая часть рыбы может быть классифицирована как более низкокачественная.

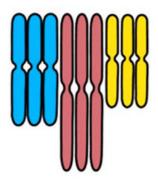
Experimental Eye Research


Volume 199, October 2020, 108150


A transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataracts


Increased prevalence of cataracts in triploid Atlantic salmon



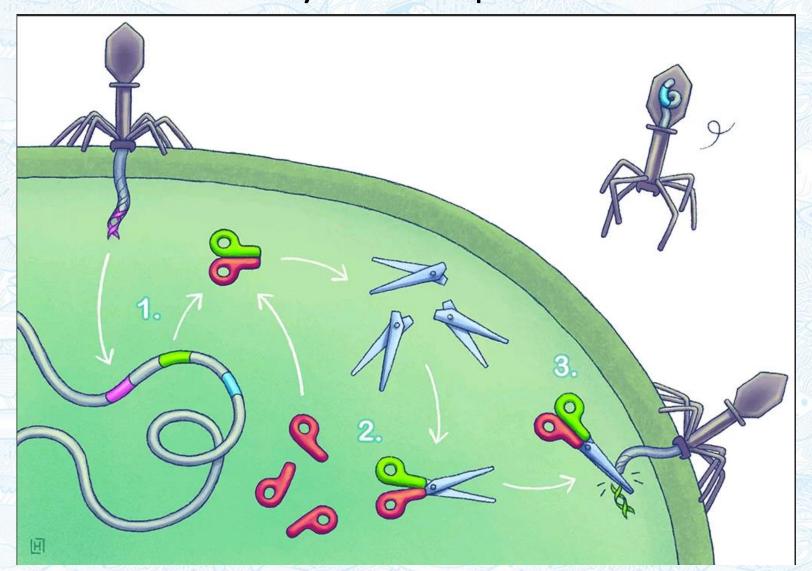


Triploid salmon 3N

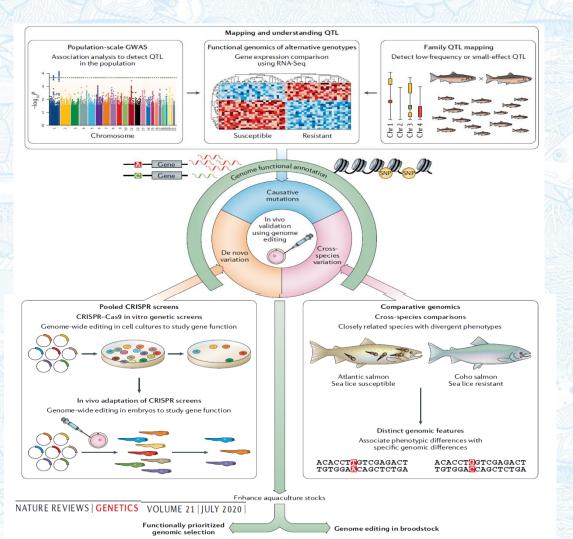
Modest transcriptional differences

Triploid lens has impaired ability to repair damaged proteins

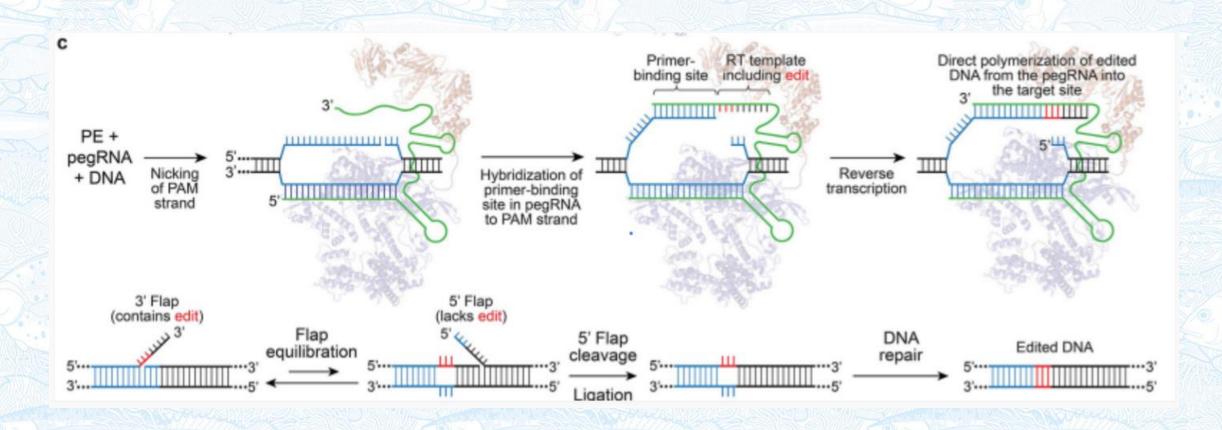
Получение рыб, представленное только самками («Самцы-реверсанты»)



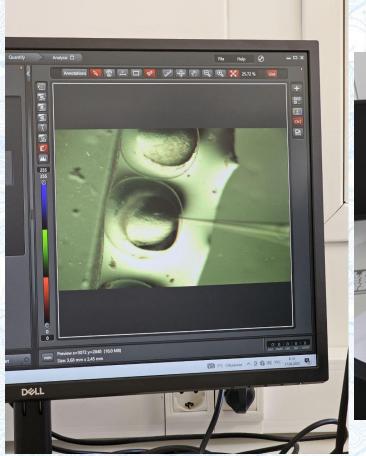
- Для получения однополого потомства, часть самок (генотип XX) маточного стада на стадии личинки в их первые 3-4 недели жизни кормят с добавкой синтетического аналога тестостерона (17метил-тестостероном), в результате у мальков происходит полное перепрограммирование генетической программы развития и получают «самцов реверсантов».
- Вся импортная икра форели представлена однополой («феминизированной») формой. В России нет возможности легально приобрести препарат для получения самцов реверсантов и получить однополое потомство.
- согласно Постановлению Правительства РФ от 29.12.2007 N 964, метил-тестостерон включен в список сильнодействующих веществ для целей статьи 234 и других статей Уголовного кодекса Российской Федерации


17-метил-тестостерон

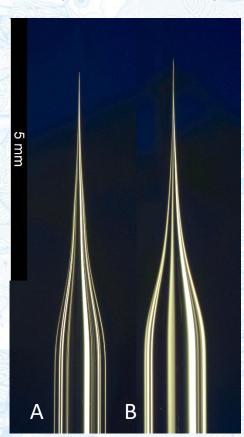
Редактирование генома — инструмент, позаимствованный у бактерий

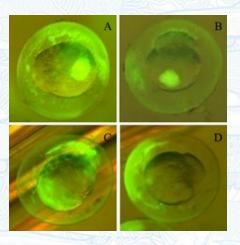

Геномное редактирование CRISPR/Cas— современный инструментарий функциональной геномики рыб

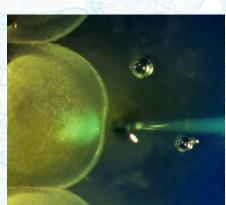
- в мировой практике активно начинаются работы по геномному редактированию инструменту по направленному внесению точечных изменений в определенных участках генома с использованием технологии CRISPR/CAS. Основное отличие этих технологий от ГМО (генно-модифицированные организмы) в том, что при геномном редактировании не вносится чужеродный генетический материал, а внесенные в геном точечные изменения являются аналогом природного мутационного процесса, наблюдаемого во всех организмах.
- отсутствие в законодательстве нормативной базы для генно-редактированных животных и растений тормозит внедрение этих современных и многообещающих технологий в практику


Prime-editing более эффективный метод редактирования ДНК без двухцепочечных разрывов

«Центр геномного редактирования», проводятся эксперименты по редактированию с использованием технологии CRISPR/Cas




Микроинъекции редактирующего комплекса в эмбрионы Cyprinus carpio



A: Иглы изготовленные на приборе RWD Micropipette puller (HF-3030B) из заготовок WPI 1B100F по программе Cycle = 1, Heat = 615, Pull = 0, Velocity = 50, Time = 250 (внутр. диам. – 1-3 мкм)

B: Eppendorf Femtotip II (внутр. диам. – 0,5 мкм)

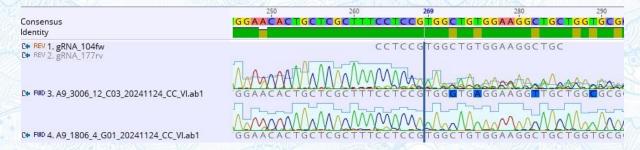
Параметры микроинъекции: угол наклона иглы в 30°С к горизонтальной оси, Pi = 800hPa, Pc = 90hPa, T = 1cek, V = 0,5nl

Инъекции зеленого флуоресцентного красителя в разные участки эмбриона **Danio rerio**:

А, В — в область желтка, С — в анимальный полюс (предпочтительная область), D — под оболочку икринки Использованы иглы Eppendorf Femtotip II

Инъекции зеленого флуоресцентного красителя в анимальный полюс эмбриона *Cyprinus carpio* Использованы иглы из заготовок WPI 1B100F

Генетическое редактирование гена миостатина (mstn) у Cyprinus carpio



Редактирующий комплекс = gRNA + Cas9 endonuclease

mstn-crRNA (хромосомы A9, B9)
104fw: GCAGCCTTCCACAGCCA*CGGAGG
177rev: GTCGGAGTTTGCTAAGA*ATT**TGG**'*' – место разреза
жирный шрифт – РАМ-мотив

Стандартный каркас gRNA (tracrRNA)

Детекция события редактирования методом секвенирования по Сэнгеру

Проведен анализ по хромосоме А9: 116 образцов

Отредактировано по хромосоме А9: 12 (10,3%) образцов

Проведен анализ по хромосоме В9: 88 образцов

Отредактировано по хромосоме В9: 9 (10%) Отредактировано по двум хромосомам: 8 (7%)

(Картина дня

Политика

Экономика)

Происшествия

Общество

рт) (

Культура

Рыба мечты: генное редактирование версия для печати помогло российским ученым создать гигантского карпа

Конструкторы России

Наука ПРО

Россия/мир > Новости > Рыба мечты: генное редактирование помогло российским ученым

Ученые-генетики ВНИРО создали гигантского суперкарпа

09.03.2025 / 12:01

TEKCT:

Николай Грищенко

#НАУКА ПРО

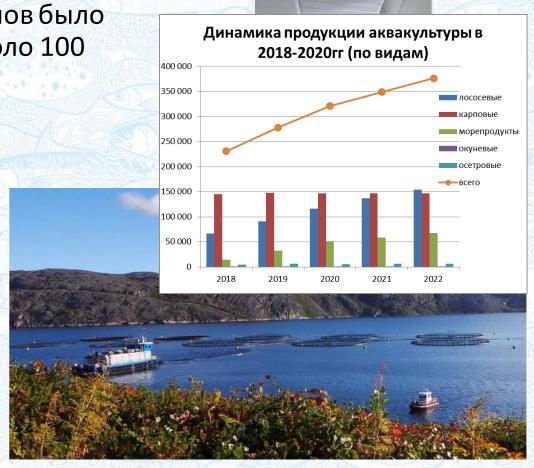
Генетики Всероссийского НИИ рыбного хозяйства и океанографии получили особей карпа с отредактированным геномом миостатина - белка, который подавляет рост

Новости науки

#ПРОСТО КОСМО

Открыты две планеты, похожие на

Редактированные по *mstn* карпы в аквариальной ВНИРО (октябрь 2025)


Форелеводство — самое быстрорастущее с.-х. направление, но от 90 до 100% икры лососевых импортируется

• Товарная аквакультура — самое быстроразвивающееся направление сельского хозяйства, обеспечивающее население высококачественной рыбной продукцией.

• В 2021-22 гг. потребность для форелеводства составляла 110 миллионов

икринок ежегодно, в то время, как только 10 миллионов было выращено от икры российского происхождения, и около 100 миллионов – ввезенных из-за рубежа

- В 2023 и 2024 гг. по данным таможни, в РФ ввезено 145 и 170 миллионов икринок форели, в то же время рост производства товарной форели последние 2 года близок к нулю.
- Объясняется низким качеством ввозимой икры (главным образом болезнеустойчивость), завоз вирусной инфекции от сомнительных поставщиков икры. Икра завозится с большим «запасом» с учетом мальковой смертности.

Основа селекции – генетическая

изменчивость!

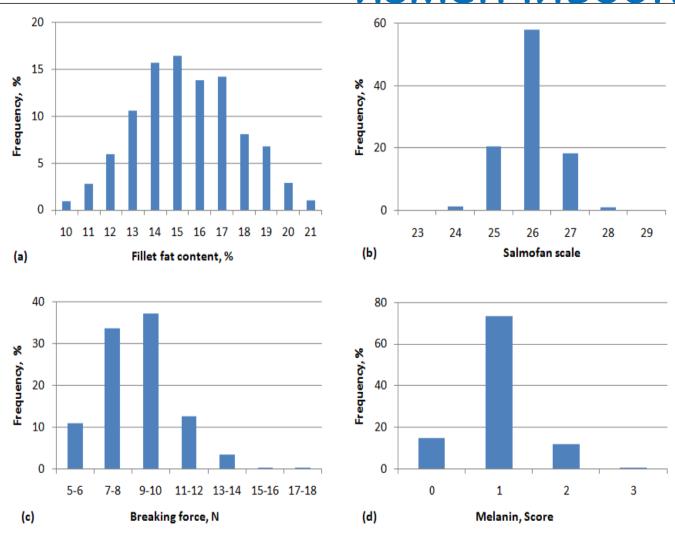
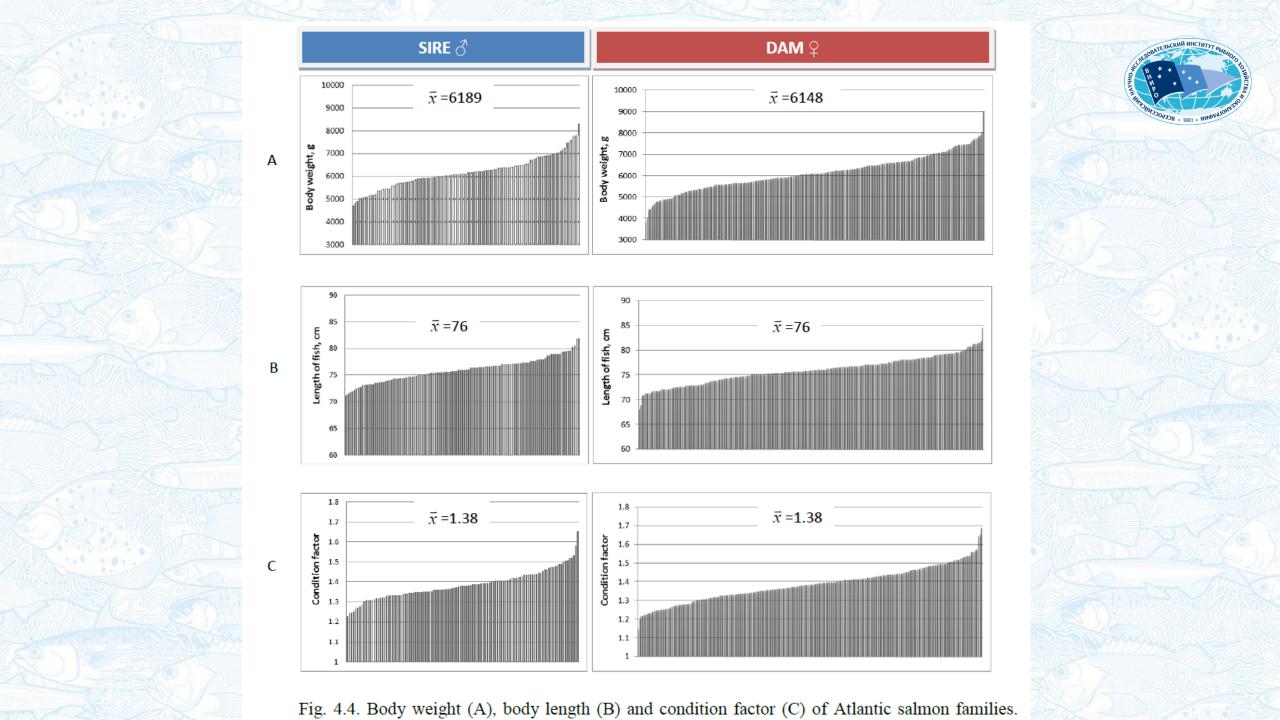
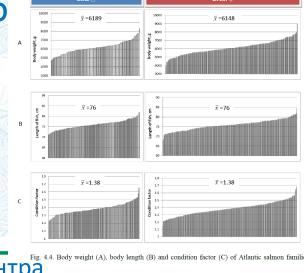
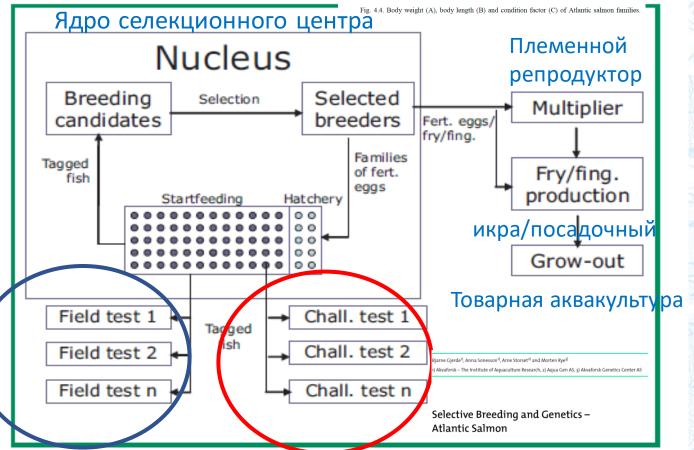
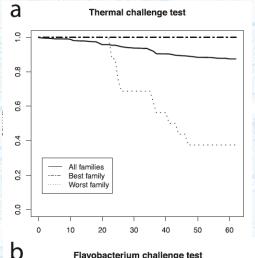



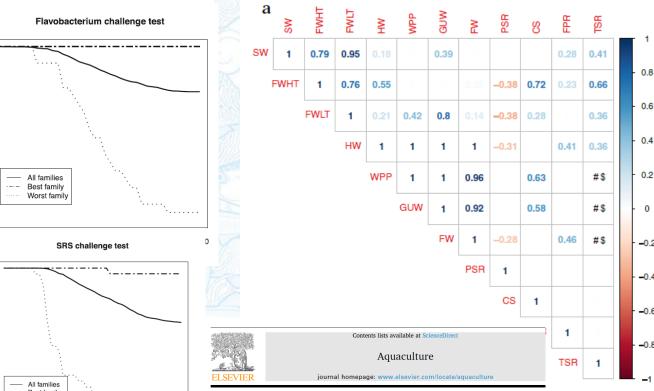
Fig. 4.2. Distribution of (a) fillet fat content (%), (b) SalmoFan score, (c) breaking force (N) and

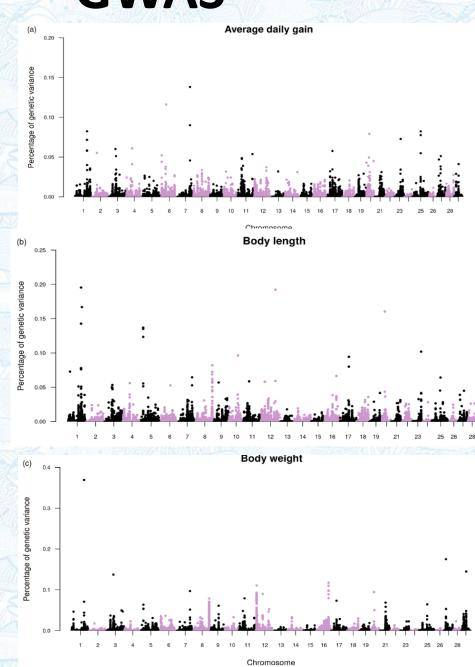

Схема современного селекционно-генетического центра и схема проведения основных этапов работы (1/2)




Field test — выявление наиболее перспективных генотипов в условиях, приближенных к товарному выращиванию (индустриальный партнер).

Challenge test — выявление наиболее устойчивых генотипов (производителей) к актуальным инфекциям (ихтиопатологический испытательный стенд ВНИРО, коллекция актуальных штаммов).


Родители (или братья-сестры) «Победителей» как в field test, так и challenging test в каждом поколении (!) переходят в племенное ядро селекционного теста, и цикл повторяется.


Genetics of growth and survival under chronic heat stress and trade-offs

Jousepth Gallardo-Hidalgo^{a,b,c}, Agustín Barría^{a,1}, Grazyella M. Yoshida^a, José M. Yáñéz^{a,d,e}

with growth- and robustness-related traits in rainbow trout

Генетическое улучшение роста выживаемости **УСЛОВИЯХ** воздействия хронического температур осуществимо. Необходимо учитывать компенсацию признаками, связанными **POCTOM** выносливостью, при одновременном включении продуктивности признаков болезнеустойчивости при направлении селекции

GWAS

SPECIAL ISSUE ORIGINAL ARTICLE

Increased accuracy of genomic predictions for growth under chronic thermal stress in rainbow trout by prioritizing variants from GWAS using imputed sequence data

Grazyella M. Yoshida¹ José M. Yáñez^{1,2}

Исследование GWAS на дневной прирост, массу и длину при выращивании форели на повышенной температуре. Выявлены несколько ключевых участков генома, содержащие три гена - signal transducer and activator of transcription 5B and 3 (STAT5B u STAT3), и cytokine-inducible SH2-containing protein (CISH)

Genomics

Volume 113, Issue 5, September 2021, Pages 3395-3404

Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (*Oncorhynchus mykiss*)

Volume 9, Issue 11 1 November 2019

Aquaculture

Volume 531, 30 January 2021, 735685

Genetics of growth and survival under chronic heat stress and trade-offs with growth- and robustness-related traits in rainbow trout

]ousepth Gallardo-Hidalgo a b c, Agustín Barría a 1, Grazyella M. Yoshida a, José M. Yáñéz a d

JOURNAL ARTICLE

Single-Step Genome-Wide Association Study for Resistance to Piscirickettsia salmonis in Rainbow Trout (Oncorhynchus mykiss) 3

Agustin Barria, Rodrigo Marín-Nahuelpi, Pablo Cáceres, María E López, Liane N Bassini, Jean P Lhorente, José M Yáñez ▼ Author Notes

G3 Genes Genomes Genetics, Volume 9, Issue 11, 1 November 2019, Pages 3833–3841,

Genetic (co)variation in skin pigmentation patterns and growth in rainbow trout

Published online by Cambridge University Press: 07 August 2018

F. H. Rodríguez, G. Cáceres, J. P. Lhorente, S. Newman, R. Bangera, T. Tadich, R. Neira and J. M. Yáñez

Show author details

Создан Центр геномной селекции объектов аквакультуры ВНИРО

- Центр геномной селекции создан на базе четырех подразделений:
- Департамент Аквакультуры
- Отдел молекулярной генетики
- Лаборатории ихтиопатологии ВНИИПРХ
- Лаборатории генетики и селекции рыб ВНИИПРХ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РЫБНОГО ХОЗЯЙСТВА И ОКЕАНОГРАФИИ»

ГНЦ РФ ФГБНУ «ВНИРО»

ПРИКАЗ

от 26.06, 2025 г.

MOCKBA

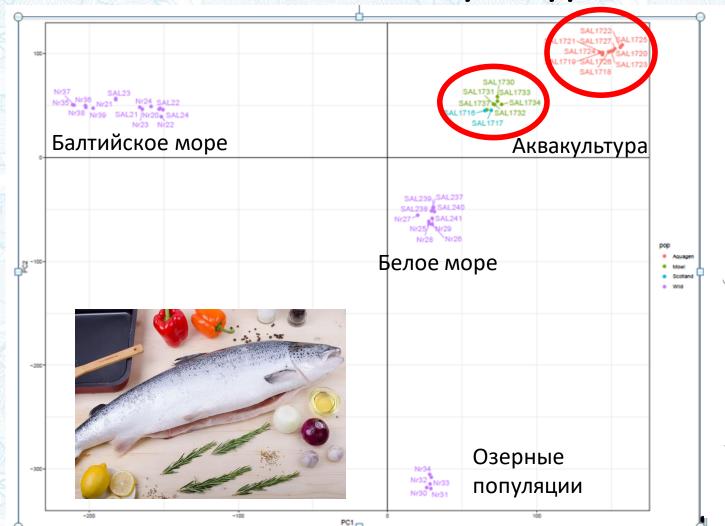
₁₀ 113

О Центре геномной селекции

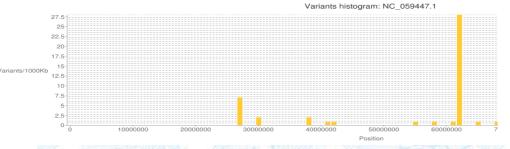
В целях организации деятельности по геномной селекции радужной форели, **приказываю**:

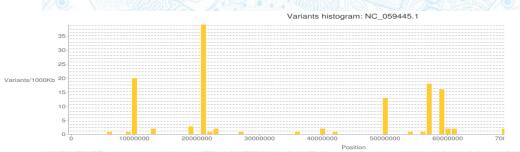

- 1. Департаменту аквакультуры, Отделу молекулярной генетики, Лаборатории ихтиопатологии и Лаборатории генетики и селекции рыб ВНИИПРХ (далее Центр геномной селекции) обеспечить:
- 1.1. подготовку и проведение работ по содержанию селекционного ядра;
- 1.2. планирование, организацию и проведение исследований, направленных на создание новых пород и линий радужной форели с

План работ Центра геномной селекции ВНИРО

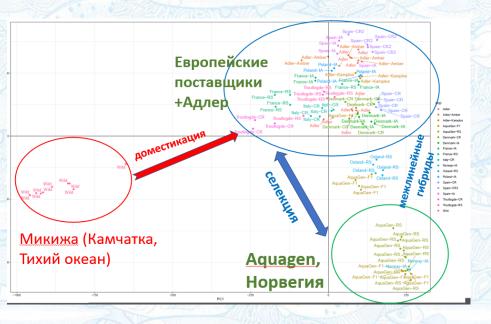

- Генотипирование наиболее и наименее устойчивых особей методом Low-Pass Seq,
- поиск геномных ассоциаций и маркеров устойчивости,
- Аннотация выявленных геномных участков, системная биология выявленных механизмов
- Отбор в селекционное ядро молоди, несущей выявленные геномные маркеры желаемых признаков.

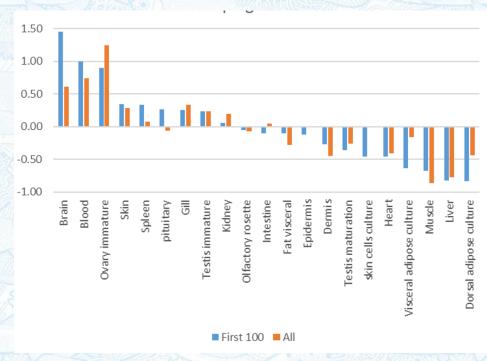
• Ревизия бактериальных и вирусных патогенов, содержащихся в Отраслевой исследовательской коллекции возбудителей заболеваний объектов аквакультуры на базе ГНЦ РФ ФГБНУ «ВНИРО», и пополнение ее новыми формами.




Полногеномное секвенирование различных популяций дикой семги (Salmo salar) и аквакультурного лосося

• Распределение дифференцирующих полиморфизмов на хромосомах неравномерно и соответствует геномным островкам дивергенции.




Радужная форель и микижа – полногеномные данные

Аннотация несинонимичных SNPs

		The Electrical		1 1100		00000000000	110	2	A STANDARD S			
Ì	Chrom	Position	ID	REF A	LT	Wild.Ref.A	Wild.Alt.A	Aquagen.l	Aquagen.A	lt.Alele.freq	Annotation	
ŧ	NC_059443.1	75133820	437846	C T		0,80	0,20	0,00	1,00	NACHT, LRR and PYD domains-containing protein 1b allele 2-like	ANN=T missense_variant I	
	NC_059443.1	83181557	453433	T C	:	0,98	0,02	0,00	1,00	zinc finger protein OZF-like	ANN=C missense_variant	
á	NC_059443.1	83280546	453658	C G	i	0,98	0,02	0,00	1,00	zinc finger protein 239-like	ANN=G missense_variant	
	NC_059443.1	83286538	453683	A T		0,98	0,02	0,00	1,00	zinc finger protein 670-like	ANN=T missense_variant&	
	NC_059444.1	68124206	608111	C A	١	0,88	0,12	0,00	1,00	volume-regulated anion channel subunit LRRC8D-like	ANN=A missense_variant	
	NC_059444.1	86273973	640569	A G	i	0,95	0,05	0,00	1,00	E3 ubiquitin-protein ligase rnf213-alpha	ANN=G missense_variant	
	NC_059446.1	2573255	853413	G A	١	0,91	0,09	0,05	0,95	neuralized E3 ubiquitin protein ligase 1B [Homo sapiens (human)]	ANN=A missense_variant	
	NC_059446.1	8017282	871812	C A	١	0,93	0,07	0,10	0,90	cationic amino acid transporter 2-like	ANN=A missense_variant	
1	NC_059446.1	38453615	933830	G C	:	0,81	0,19	0,05	0,95	protocadherin gamma-C5-like	ANN=C missense_variant	
	NC_059446.1	38457346	933845	G C	:	0,93	0,07	0,15	0,85	protocadherin gamma-C5	ANN=C missense_variant	
	NC_059446.1	52194322	955317	A G	i	0,97	0,03	0,20	0,80	trophoblast glycoprotein	ANN=G missense_variant	
	NC_059447.1	41158430	1097855	G C	:	0,97	0,03	0,20	0,80	uncharacterized LOC106607289	ANN=C missense_variant	
	NC_059447.1	62577530	1128576	G A	١.	0,78	0,22	0,05	0,95	minichromosome maintenance 9 homologous recombination repair factor	ANN=A missense_variant	
	NC_059449.1	15539449	1367705	C T		0,71	0,29	0,00	1,00	sperm-associated antigen 5	ANN=T missense_variant I	86
2	NC_059449.1	15540094	1367708	C G	i	0,93	0,07	0,20	0,80	sperm-associated antigen 5	ANN=G missense_variant	
i	NC_059450.1	77959345	1516377	T G	i	0,90	0,10	0,05	0,95	slit homolog 3 protein	ANN=G missense_variant	
1	NC_059453.1	8964948	2075365	T C	:	0,17	0,83	1,00	0,00	zinc finger protein 271-like	ANN=C missense_variant	
+	NC_059454.1	96068392	2401875	A T		0,79	0,21	0,05	0,95	rabphilin 3A homolog (mouse), a [Danio rerio (zebrafish)]	ANN=T missense_variant I	
Ŀ	NC_059456.1	2470279	2636121	G A	١.	0,95	0,05	0,15	0,85	titin-like	ANN=A missense_variant	
1	NC_059456.1	2470468	2636122	G T		0,95	0,05	0,15	0,85	titin-like	ANN=T missense_variant I	The second
i	NC_059456.1	25359169	2691255	G C	:	0,79	0,21	0,05	0,95	tumor necrosis factor alpha-induced protein 2-like	ANN=C missense_variant	
1	NC_059456.1	29003271	2700079	G A	١.	0,21	0,79	0,95	0,05	putative GPI-anchored protein pfl2	ANN=A missense_variant	
1	NC_059456.1	55384465	2738634	C T		0,95	0,05	0,20	0,80	WD repeat and coiled-coil-containing protein-like	ANN=T missense_variant I	K
1	NC_059456.1	58893399	2744509	C A	١.	0,12	0,88	0,95	0,05	pre-mRNA-processing factor 17	ANN=A missense_variant	
i	NC_059457.1	26428415	2876369	C A	١.	0,88	0,12	0,05	0,95	NACHT, LRR and PYD domains-containing protein 12-like	ANN=A missense_variant	
ŀ	NC_059457.1	73523056	2943859	C T		0,05	0,95	0,90	0,10	TRNAL-CAG transfer RNA leucine (anticodon CAG) [Abrus precatorius (Ind	ANN=T missense_variant	
ŀ	NC_059457.1	78740444	2950787	C A	1	0,88	0,12	0,10	0,90	transmembrane protein 131-like	ANN=A missense_variant	
d	NC_059458.1	51613810	3056792	T C	:	0,17	0,83	1,00	0,00	protein-methionine sulfoxide oxidase mical3a	ANN=C missense_variant	
7	NC_059458.1	62379075	3073198	A T		0,93	0,07	0,15	0,85	uncharacterized LOC106576302	ANN=T missense_variant I	
þ	NC_059458.1	62379087	3073200	A G	ì	0,91	0,09	0,15	0,85	uncharacterized LOC106576302	ANN=G missense_variant	
	NC_059458.1	62379097	3073202	G A	1	0,91	0,09	0,15	0,85	uncharacterized LOC106576302	ANN=A missense_variant	
à	NC_059458.1	62379105	3073204	C T	•	0,91	0,09	0,15	0,85	uncharacterized LOC106576302	ANN=T missense_variant I	Œ,
1	NC_059460.1	29143621	3313099	G C	;	0,86	0,14	0,05	0,95	general transcription factor II-I repeat domain-containing protein 2-like	ANN=C missense_variant	
j	NC_059461.1	88143126	3556121	T C	;	0,90	0,10	0,10	0,90	immunoglobulin superfamily member 10-like	ANN=C missense_variant	
	NC_059461.1	95481214	3583010	C A		0,21	0,79	1,00	0,00	contactin 5 [Homo sapiens (human)]	ANN=A missense_variant	
į	NC_059462.1	51198311	3677268	T C	:	0,10	0,90	0,95	0,05	trace amine-associated receptor 8c-like	ANN=C missense_variant	
1	NC_059467.1	19634242	4147682	с т		0,86	0,14	0,10	0,90	involucrin-like	ANN=T missense_variant I	1

Была создана панель генетических маркеров, характеризующих отличия наиболее продвинутых пород и линий современной российской и западной селекции от их диких предковых форм. Современные селектированные линии характеризуются такими признаками как высокая продуктивность, скорость роста, высокий кормовой коэффициент, болезне- и стрессоустойчивость. Результатом биоинформационного и системнобиологического анализа нами были составлены панели маркеров (списки SNP-сайтов, частоты аллелей в которых коррелируют с фенотипом) для трех видов аквакультурных рыб – атлантического лосося (семги), радужной форели и карпа Панели SNP-маркеров, дифференцирующих аквакультурную форму Aquagen от дикой анадромной формы и линию Mowi от предковой анадромной формы насчитывают около 72 тыс полиморфизмов в каждом сравнении

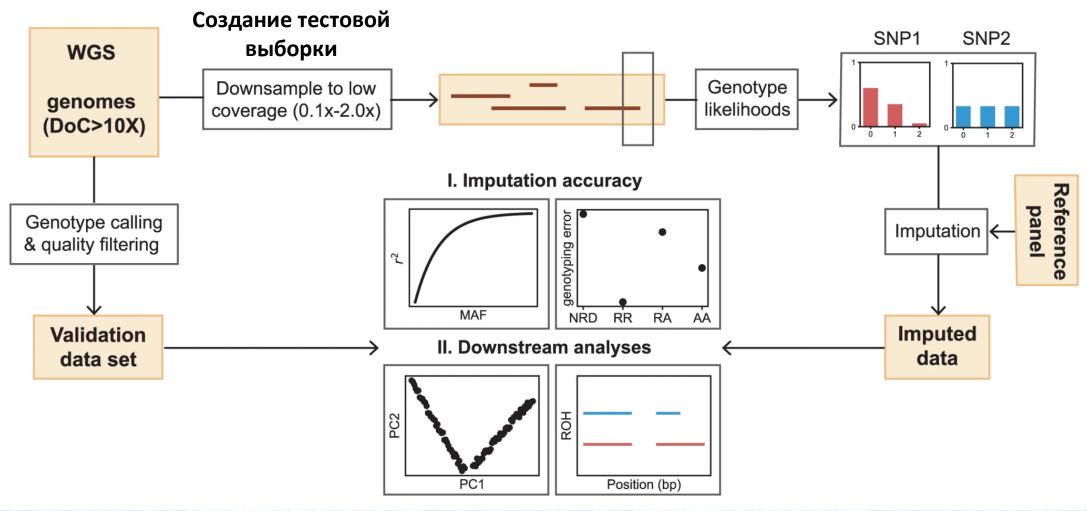
Whole Genome Low-Pass Targeted Sequencing

WGS Sequencing

DIDI DIDI

DIDI

Targeted Sequencing

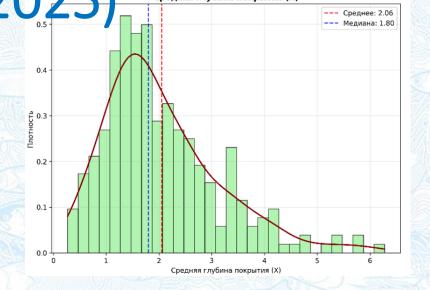

Импутация — это процесс присвоение значений отсутствующим данным на основе связанных известных данных. Присвоение генотипа особи в каждом локусе на основе статистического состава генетических вариантов в популяции.

Low-Pass WGS + Imputation:

- □ Большая информативность, нежели стандартные микрочипы
- Низкая стоимость, чем у глубокого секвенирования и микрочипов

Импутация генотипов - Модель

Цель: Определение параметров для секвенирования с низким покрытием.


Результаты первого в России low-pass секвенирования набор AgriHigh Low-pass WGS Package (сентябрь 2025).

SCHLODATEDLICKING WHICTHTYY PAGENDO BE STORY THE STORY T

• Получены данные геномов 384 рыб

• Среднее количество прочтений на образец составило 39 098 611

- 35 276 784 картированы на референсный геном (USDA_OmykA_1.1)
- Среднее значение покрытия составляет 72.65%, Среднее значение по всем образцам составляет 2.29х, медиана 1.82х
- Референсная база для импутации создана на 635 геномах и содержит17,037,139 SNP
- Средний INFO_SCORE(квадрат корреляции между истинным (неизвестным) генотипом и импутированным генотипом), он же Imputation Quality Score, составил 0.993

Работы выполняются при поддержке трех грантов Минобрнауки:

- .. «Создание панели геномных маркеров высокой продуктивности и болезнеустойчивости как основа для геномной селекции и геномного редактирования при создании новых отечественных пород и линий семги, форели и карпа» Соглашение № № 075-15-2021-1084 2021-2024гг.
- 2. «Геномная селекция как инструмент интенсификации создания новых отечественных пород и линий лососевых рыб для товарной аквакультуры» Соглашение № № 075-15-2025-479 от «30» мая 2025 г. (2025-2027 гг)
- 3. «Создание и развитие центра геномной селекции радужной форели на базе ГНЦ РФ ФГБНУ "ВНИРО"» Соглашение № № 075-15-2025-177 от «17» апреля 2025 г. . (2025-2027 гг)

