

Генетические основы продуктивных качеств лососевых рыб

Щербаков Юрий Сергеевич, кандидат биологических наук

научный сотрудник лаборатории молекулярной генетики ВНИИГРЖ

BMP-2 — ген, кодирующий костный морфогенетический белок-2 (bone morphogenetic protein-2).

Molecular Genetics and Genomics https://doi.org/10.1007/s00438-018-1518-2

ORIGINAL ARTICLE

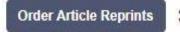
Genome-wide association analysis for body weight identifies candidate genes related to development and metabolism in rainbow trout (*Oncorhynchus mykiss*)

Rafael Vilhena Reis Neto^{1,2} · Grazyella Massako Yoshida^{1,3} · Jean Paul Lhorente⁴ · José Manuel Yáñez^{1,4,5}

Частота генотипов и аллелей гена *ВМР-2*, расположенного на 4 хромосоме по обнаруженным заменам у самок и самцов радужной форели породы рофор.

	4BMP-2_1					
	Частота генотипа			Частота аллеля		
	AA=16	AG=13	GG=3	A	G	
9	0,624	0,313	0,063	0,781	0,219	
3	0,375	0,500	0,125	0,625	0,375	
	4BMP-2_2					
		Частота генот	ипа	Часто	та аллеля	
	CC=9	CT=23	TT=0	C	T	
\$	0,187	0,813	0	0,594	0,406	
8	0,375	0,625	0	0,687	0,313	
	4BMP-2_3					
	Частота генотипа		Частота аллеля			
	AA=12	AG=14	GG=6	A	G	
9	0,187	0,500	0,313	0,437	0,563	
8	0,563	0,374	0,063	0,750	0,250	
	4BMP-2_4					
	Частота генотипа			Частота аллеля		
	GG=8	GT=21	TT=3	G	T	
9	0,500	0,500	0	0,750	0,250	
8	0	0,813	0,187	0,406	0,594	
	4BMP-2_5					
	Частота генотипа		ипа	Частота аллеля		
	AA=6	AG=14	GG=12	A	G	
9	0,313	0,500	0,187	0,563	0,437	
7	0,063	0,374	0,563	0,250	0,750	

Таблица 2 - Частота генотипов и аллелей гена *ВМР-2*, расположенного на 24 хромосоме у самок и самцов радужной форели породы рофор.


	3BMP-2_1					
	Частота генотипа			Частота аллеля		
	AA=3	AC=19	CC=10	A	С	
4	0,125	0,438	0,438	0,344	0,656	
5	0,063	0,750	0,188	0,438	0,562	
	3BMP-2_2					
		Частота генотиг	ıa	Частота аллеля		
	CC=6	CG=17	GG=9	С	G	
9	0,250	0,500	0,250	0,500	0,500	
3	0,125	0,563	0,313	0,406	0,594	
	3BMP-2_3					
	Частота генотипа			Частота аллеля		
	AA=3	AG=22	GG=7	A	G	
9	0,063	0,688	0,250	0,406	0,594	
8	0,125	0,688	0,188	0,469	0,531	
	3BMP-2_4					
	Частота генотипа			Частота аллеля		
	AA=2	AG=15	GG=15	A	G	
9	0,125	0,375	0,500	0,313	0,687	
8	0	0,563	0,438	0,281	0,719	
	2BMP-2_1					
	Частота генотипа			Частота аллеля		
	CC=12	CT=19	TT=1	C	T	
9	0,188	0,750	0,063	0,563	0,437	
8	0,563	0,438	0	0,781	0,219	
	2BMP-2_2					
	Частота генотипа		Частота а			
	AA=23	AG=9	GG=0	A	G	
9	0,750	0,250	0	0,875	0,125	
3	0,688	0,313	0	0,844	0,156	

Особенности генома лососевых

1<

Open Access Review

Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics

- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
- * Author to whom correspondence should be addressed.

Genes 2022, 13(12), 2221; https://doi.org/10.3390/genes13122221

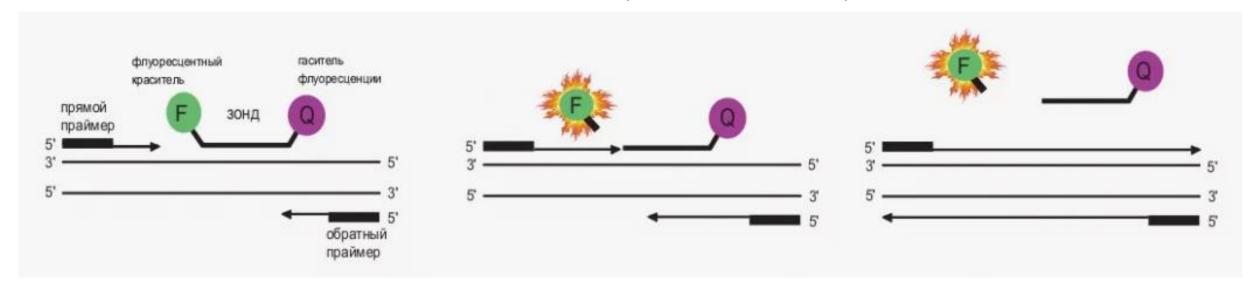
Submission received: 12 September 2022 / Revised: 19 October 2022 / Accepted: 24 November 2022 /

Published: 27 November 2022

Таблица 3 - Размерно-весовые показатели самок радужной форели с различными генотипами гена *BMP-2*

Показатель	чными теногина 	Генотип	
HURA3AI UIB	Замена 4BMP-2_3	1 CHO I MII	
	Замена 4ВWII -2_3 AA=9	AG=6	GG=0
Масса рыбы, г	3111,67±288,39	3498,13±164,20	
Длина тела по Смиту, см	56,83±4,16	56,18±1,11	-
Длина тела чешуйчатого покрова, см	49,50±1,10	51,90±0,99	-
Длина головы, см	10,23±0,13 a	10,95±0,23 b	-
Высота тела, см	16,53±0,48	17,00±0,32	_
Толщина тела, см	7,37±0,34	7,53±0,16	
	Замена 4ВМР-2_4	1,7-2-2, 2	
	GG=8	GT=8	TT=0
Масса рыбы, г	3350,63±203,89	3534,44±108,20	-
Длина тела по Смиту, см	55,18±1,09	58,63±1,28	-
Длина тела чешуйчатого покрова, см	50,96±1,02	53,58±0,90	-
Длина головы, см	10,55±0,21a	11,13±0,17 b	-
Высота тела, см	16,64±0,32	17,39±0,13	-
Толщина тела, см	7,36±0,21	7,61±0,13	-
	Замена 4ВМР-2_5		
	AA=5	AG=8	GG=3
Масса рыбы, г	3648,00±171,96	3498,13±164,20	3111,67±288,39
Длина тела по Смиту, см	58,88±1,31	56,18±1,11	56,83±4.16
Длина тела чешуйчатого покрова, см	54,84±1,16 a	51,90±0,99	49,50±1,10 ^b
Длина головы, см	11,16±0,24 a	10,95±0,23 a	10,23±0,13 b
Высота тела, см	17,36±0,21	17,00±0,32	16,53±0,48
Толщина тела, см	7,66±0,22	7,53±0,16	7,37±0,34
	Замена ЗВМР-2_2		
	CC=4	CG=8	GG=4
Масса рыбы, г	3236,25±177,22	3502,50±203,59	3648,75±90,05
Длина тела по Смиту, см	54,50±0,69 a	56,31±1,33 a	61,45±1,20 ^b
Длина тела чешуйчатого покрова, см	50,50±0,92 a	52,16±1,22	54,65±1,22 b
Длина головы, см	10,53±0,21	10,86±0,24	11,28±0,28
Высота тела, см	16,73±0,26	17,04±0,37	17,30±0,12
Толщина тела, см	7,55±0,27	7,45±0,18	7,70±0,17

Примечания: a-b при P <0,01-0,05


Таблица 4 - Размерно-весовые показатели самцов радужной форели с различными генотипами гена *BMP-2*

Показатель	Генотип				
Позиция 3ВМР-2_2					
	CC=2	CG=9	GG=5		
Масса рыбы, г	542,50±57,50	702,22±49,42 ^a	558,00±44,68 ^b		
Длина тела по Смиту, см	33,05±0,95	36,12±0,81a	33,58±1,26 ^b		

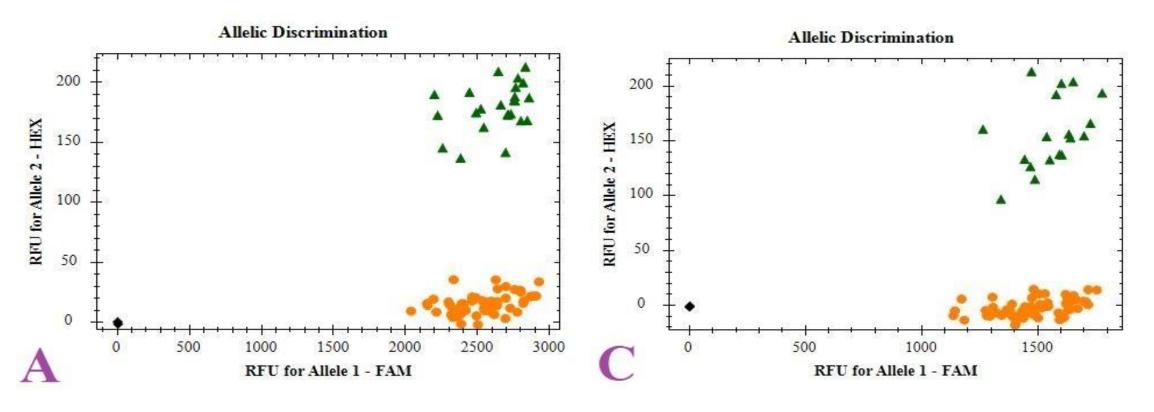
Полимеразная цепная реакция в режиме реального времени с использованием реагентов Taq-man

Результаты тестирования особей радужной форели по одному из обнаруженных полиморфизмов гена *BMP-2*

Показатель	Генотип			
	AA n=0	AG n=7	GG n=70	
Масса рыбы, г	-	1314,57±119,62	1220,57±49,56	
Длина тела по Смиту, см	-	45,70±1,17	50,69±6,18	
Длина до конца чешуйчатого покрова, см	-	42,83±1,18	41,41±0,42	
Длина головы, см	-	8,51±0,20	8,48±0,39	
Высота тела, см	-	7,87±0,42	7,43±0,12	
Толщина тела, см	-	5,17±0,23	5,02±0,08	

Результаты тестирования особей радужной форели по одному из обнаруженных полиморфизмов гена *TNS2* (*Tensin2*)

Показатель	Показатель				
	Tensin2				
	AA n=19	AG n=51	GG n=7		
Масса рыбы, г	1287,47±48,77	1215,18±64,28	1172,29±159,99		
Длина тела по Смиту, см	45,46±0,71	52,82±8,49	44,40±1,46		
Длина до конца чешуйчатого покрова, см	42,31±0,67	41,23±0,52	41,66±1,39		
Длина головы, см	8,28±0,12	8,62±0,53	8,06±0,27		
Высота тела, см	7,94±0,17 ^a	7,27±0,15 ^b	7,58±0,51		
Толщина тела, см	5,07±0,07	5,02±0,10	5,03±0,29		



Результаты тестирования особей радужной форели по одному из обнаруженных полиморфизмов генов *КСР, GH1, GHRH*

<i>КСР</i> (кодирует килин хондриноподобный бе <i>л</i>	лок, усиливающий г	передачу сигналов морфокост	ных белков)
	CC, n=0	CG, n=34	GG, n=16
Масса рыбы, г	-	4,69±0,27	4,16±0,28
Длина тела по Смиту, мм	-	69,45±1,45	68,18±1,64
Длина до конца чешуйчатого покрова, мм	-	63,39±1,35	62,02±1,46
Длина головы, мм	-	15,42±0,30	15,01±0,29
Высота тела, мм	-	16,63±0,40	15,64±0,47
Толщина тела, мм	-	8,37±0,23	7,85±0,23
GH1 (ген	н гормона роста 1)		
	AA, n=1	AC, n=40	CC, n=9
Масса рыбы, г	-	4,66±0,24	4,05±0,30
Длина тела по Смиту, мм	-	69,56±1,30	67,73±1,75
Длина до конца чешуйчатого покрова, мм	-	63,46±1,21	61,71±1,66
Длина головы, мм	-	15,44±0,26	14,86±0,40
Высота тела, мм	-	16,55±0,37	15,53±0,43
Толщина тела, мм	-	8,34±0,20 ^a	7,67±0,25 ^b
GHRH (кодирует гормон	, высвобождающий	гормон роста)	
	AA, n=1	AT, n=35	TT, n=14
Масса рыбы, г	-	4,61±0,21	4,24±0,51
Длина тела по Смиту, мм	-	69,48±1,13	67,57±2,80
Длина до конца чешуйчатого покрова, мм	-	63,38±1,08	61,56±2,49
Длина головы, мм	-	15,39±0,24	14,92±0,50
Высота тела, мм	-	16,50±0,33	15,77±0,76
Толщина тела, мм	-	8,3±0,21	7,97±0,34

Визуализация результатов полимеразной цепной реакции в режиме реального времени с использованием реагентов Taq-man

Проект РНФ № 25-76-10090

Выполнение проекта запланировано на 3 года (с 2025 по 2027г.)

Материал исследования: реверсивная радужная форель и ладожская палия.

Начальный этап работы: снятие морфометрических промеров, сбор и подготовка биологического материала рыб.

Этап полногеномного секвенирования образцов, комплексного биоинформационного анализа и сборка геномов.

Этап разработки среды и оптимизации условий криоконсервации и размораживания спермы.

Ожидаемые результаты проекта: биоинформационные данные по генотипам и выявленные ассоциативные связи с размерно-весовыми качествами и показателями криорезистентности спермы, а также оптимизированный метод заморозки-разморозки спермы.

Что нам даст полный геном?

- -Возможность выполнить поиск полногеномных ассоциаций (GWAS анализ), с помощью которого можно выявить маркеры для селекции (например, для быстрого роста, иммунорезистентности и других желаемых признаков).
- -Возможность поиска «следов селекции» через анализ гомозиготных районов (ROH)
- -Обнаружение структурных вариаций (SV): дупликаций, инверсий, транслокаций и крупных вставок/делеций.
- -Перспективы для проведения анализа дифференциации между природными и искусственно выращиваемыми популяциями.
- -Возможность функциональной аннотации генетических маркеров с использованием референсного генома.

СПАСИБО ЗА ВНИМАНИЕ!

